Human Health Risk Assessment for Smelter/Tailings Soils Investigation Unit (S/TSIU)

Presentation to Community Workgroup Hurley, NM

Rosemary Mattuck
Senior Environmental Engineer
Gradient Corporation

September 16, 2008

Overview

- ☐ Risk Assessment overview
- ☐ Receptors and pathways evaluated
- ☐ Summary of risk results

CERCLA RI/FS Process

Remedial Investigation (RI)

- · Field Investigation
- · Nature and Extent of contamination

Risk Assessment

- · Human Health Risks
- · Contaminants of Concern

Feasibility Study (FS)

- Identify and Compare Remedial Alternatives
- Effective Remediation Strategy

Record of Decision

Purpose of Risk Assessment

- Estimate probability of adverse health effects from exposure to chemicals
- Consider possible present and future exposures
- □ Inputs
 - Environmental data
 - Exposure parameters
 - Chemical potency or toxicity
- Approach yields conservative estimates of possible risks (more likely to overestimate risk)
- Used to determine need for and extent of remediation

Smelter/Tailing Soils Investigation Unit

Smelter/Tailing Soils Investigation Unit

Smelter/Tailing Soils Investigation Unit

Exposure Pathways

Receptors Evaluated

- □ Current Residents (Child and Adult)
- □ Future Residents (Child and Adult)
- □ Construction Workers (Adult)
- □ Ranchers (Adult)
- □ Recreators (swimming, hiking, etc.) (Adolescents)
- □ Trespassers (swimming, hiking, etc.)(Adolescents)
- □ Industrial Workers at Smelter (Adult)

Receptors by Exposure Area

Receptor		Exposure Area						
	EA 1	EA 2	EA3	EA 4	EA 5	Reference	Smelter	
Current Resident (Child & Adult)		X						
Future Resident (Child & Adult)	Х	X	X	X	Х	X		
Construction Worker	X	X						
Rancher	X	Х			Х			
Industrial Worker							X	
Recreator-Hiker	X				Х			
Recreator-Swimmer					Х			
Trespasser-Hiker			Х	X				
Trespasser-Swimmer				X		λ .		

Pathways Evaluated

Pathway

Receptor	Soil Ingestion	Dermal Contact with Soil	Dust Inhalation	Ingestion of Local Beef, Chicken, Eggs & Vegetables	Ingestion of Groundwater	Dermal Contact with Groundwater
Resident (Child & Adult)	x	x	x	x	X	x
Construction Worker	x	X	x			
Rancher	X	×	x			
Industrial Worker	X	x	x			

Pathways Evaluated

Pathway

Receptor	Soil Ingestion	Dermal Contact with Soil	Dust Inhalation	Ingestion of Surface Water	Dermal Contact with Surface Water	Ingestion of Sediment	Dermal Contact with Sediment
Recreator- Hiker	x	x	X				
Trespasser- Hiker	x	X .	x				
Recreator- Swimmer				x	x	X	X
Trespasser- Swimmer				X	x	x	X

Chemicals Evaluated

- □ Chemicals of concern at S/TSIU are metals
- Metals are elements that can not be broken down into simpler substances
- Metals are present naturally in the environment (soil, food)
- □ Some metals are essential nutrients
- ☐ Metals evaluated
 - · Soil: Arsenic, Cadmium, Copper, Iron, Thallium
 - · Groundwater: Manganese

Soil Concentrations Compared to Reference Area (Background)

Mean Soil Concentrations (mg/kg) in S/TSIU Exposure Areas *vs.* Reference Area

	EA1	EA2	EA3	EA4	EA5	Smelter	Reference
Arsenic	2.41	2.50	3.51	4.38	1.93	18.30	2.12
Cadmium	0.96	0.99	4.56	3.40	0.47	5.94	0.58
Copper	638	1,058	1,297	4,306	370	18,700	136
Iron	21,527	22,491	45,209	21,014	22,471	43,140	36,600
Thallium	0.34	0.37	0.35	0.48	0.27	0.48	7.28

Blue: Mean is greater than Reference Area concentration, with statistical significance.

Risk Assessment

Quantifying Exposure

Example of Exposure Calculation

Amount of metal taken into the body from soil

Amount of soil ingested

Amount of metal in soil

X

Percent of metal absorbed

X

Risk Assessment

- □ Noncancer health effects
 - Arsenic, Cadmium, Copper, Iron, Thallium Manganese
- □ Cancer health effects
 - Arsenic, Cadmium (inhalation only)
- □ Reasonable Maximum Exposure (RME)
 - · High end exposures
- □ Central Tendency Exposure (CTE)
 - Average exposures

Risk Assessment

Toxicity - Assessment of Noncancer Health Effects

- □ Reference Dose (RfD) = Lifetime daily dose unlikely to cause noncancer effects
- □ Based on:
 - "No observed adverse effect level" or "Lowest observed adverse effect level" in animal or human studies
 - · Uncertainty factors
 - Animal to human extrapolation
 - Sensitive subpopulations

Toxicity - Assessment of Cancer Effects

- □ Cancer Slope Factor (CSF)
 - Risk of cancer per unit dose or concentration
- Based on animal or human cancer data

Risk Assessment

Exposure and Dose Risk Characterization

Toxicity

Risk Characterization

- □ Noncancer risk results reported as Hazard Quotient (HQ)
 - HQ = Dose/RfD
 - HQ < 1 indicates noncancer effects unlikely
- Cancer risks reported as incremental probability of developing cancer due to site exposure, i.e., "excess lifetime cancer risk"
 - Cancer risk = CSF/Dose
 - EPA target range: "1 in a million" to "1 in 10,000"
 - Also written as 1x10-6 to 1x10-4, or 0.000001 0.0001
 - Background cancer risk ~ "250,000 in a million", or 0.25 (1 in 4)

Risk Results

- □ Cancer RME & CTE
 - Residents
 - Non-Residents
- □ Noncancer RME & CTE
 - Residents
 - Non-Residents

Major Contributors to Risk

- □ Pathways with highest contribution to risk
 - Cancer
 - Residents: Locally-grown food, mainly vegetables
 - Swimmer: Surface water ingestion
 - Hiker, Rancher, Construction Worker, Industrial Worker:
 Soil ingestion
 - Noncancer
 - Residents: Locally-grown food, mainly beef, vegetables
 - Swimmer: Dermal contact with surface water & sediment
 - Rancher: Ingestion and Dermal contact with soil
 - Hiker, Construction Worker, Industrial Worker:
 Dermal contact with soil

Major Contributors to Risk

- ☐ Metals with highest contribution to risk
 - · Cancer: Arsenic
 - Noncancer:
 - Residents: Iron, Thallium
 - Residents in Reference Area: Thallium
 - Hiker, Swimmer: Iron
 - Rancher, Construction Worker, Industrial Worker: Iron

Copper Risks from Soil Ingestion

- Copper risk evaluated using same methodology used to develop Copper RAC for Hurley Soils IU
- Most sensitive endpoint for copper toxicity is nausea
- Copper risk given as estimated number of nausea episodes per year
- Uses child-specific exposure factors; very conservative for adults

Food Pathways Highly Uncertain

- Much of risk from food pathway due to background concentrations in soil
- Metals concentrations in foods modeled from soil concentrations; high degree of uncertainty.
- All assumptions conservative; tend to overestimate risks
 - Soil concentration: Homegrown vegetables likely require soil amendments
 - Uptake of metals from soil to plants or grass
 - Soil ingestion rates for cow, chicken
 - Transfer of ingested metals to meat (beef, chicken)
 & from chicken to egg
 - Ingestion rates for homegrown vegetables, beef, chicken, eggs

Hurley Modeled vs. Measured Plant Concentrations

- ☐ Hurley Homegrown Garden Plant Investigation (Golder Associates, August, 2001)
- ☐ Soil & 8 garden plants from 3 Hurley gardens
- 9 Reference plants from grocery store
- □ Tomatoes, Chilies, Chard, Onions
- ☐ Measured plant concentrations <u>much lower</u> than modeled concentrations
- Garden plant concentrations similar to Reference plants

Hurley Modeled vs. Measured Plant Conc.

Hurley Modeled vs. Measured Plant Conc.

Conclusions

- Cancer and Noncancer Risks below target levels for
 - Recreators hikers or swimmers
 - Trespassers hikers or swimmers
 - Ranchers
 - Construction workers
 - · Industrial workers
- ☐ For both RME and CTE scenarios

Conclusions (continued)

- □ RME Cancer risks above 1x10-4
 - Residents in all Exposure Areas
 - Residents in Reference Area
 - >90% of risk from food pathway
- □ RME risks ? 1x10⁻⁵, excluding food pathway
- □ CTE Cancer risks below 1x10-4
 - Residents in all Exposure Areas
 - Residents in Reference Area
- ☐ Most risk is from background levels in soil

Conclusions (continued)

- □ RME Noncancer risks above 1
 - Child & Adult Residents in all Exposure Areas
 - Child & Adult Residents in Reference Area
 - >90% of risk from food pathway
- □ CTE Noncancer risks above 1
 - · Child & Adult Residents in all Exposure Areas
 - Child & Adult Residents in Reference Area
 - 80-90% of risk from food pathway
- □ Excluding food pathway:
 - Adult: RME & CTE noncancer risks below 1
 - Child: CTE noncancer risks below 1

Question and Answer

